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Abstract

This paper proposes a dynamic attention-based visual

odometry framework (DAVO), a learning-based VO method,

for estimating the ego-motion of a monocular camera.

DAVO dynamically adjusts the attention weights on differ-

ent semantic categories for different motion scenarios based

on optical flow maps. These weighted semantic categories

can then be used to generate attention maps that highlight

the relative importance of different semantic regions in in-

put frames for pose estimation. In order to examine the

proposed DAVO, we perform a number of experiments on

the KITTI Visual Odometry and SLAM benchmark suite to

quantitatively and qualitatively inspect the impacts of the

dynamically adjusted weights on the accuracy of the eval-

uated trajectories. Moreover, we design a set of ablation

analyses to justify each of our design choices, and validate

the effectiveness as well as the advantages of DAVO. Our

experiments on the KITTI dataset shows that the proposed

DAVO framework does provide satisfactory performance in

ego-motion estimation, and is able deliver competitive per-

formance when compared to the contemporary VO methods.

1. Introduction

Learning based visual odometry (VO) has been a crucial

research domain [1-14] in the past few years. The objective

of it is to derive the ego-motion of a camera using learn-

ing based approaches such as deep convolutional neural net-

works (DCNNs). The techniques based on a single monoc-

ular camera is especially of interest to recent researches due

to its wide availability and low cost. Conventional learn-

ing based VO works typically exploit the entire RGB input

frames for determining the trajectory of the camera [15-19],

where some of them may take additional inputs such as op-

tical flow maps (or simply ‘flow maps’) [4, 10, 11, 20, 21],

semantic segmentation [22-24], depth maps [1,3,25-29], or

a fusion of them [24, 30]). These approaches usually treat

every single frame the same way. Nevertheless, each se-

mantic category in a frame may contribute different extents

of information when they are used for estimating the tra-

Figure 1: Changes in attention maps for three motion sce-

narios.

jectory of the camera in different motion scenarios (e.g.,

straight moves, making turns, etc.). For example, cars or

pedestrians are usually considered as dynamic objects that

may harm the performance of ego-motion estimation. This

motivates recent researchers to propose techniques to deal

with dynamic objects by directly removing them from input

frames [31,32] before estimating the trajectories of the cam-

era. However, in some motion scenarios, objects belonging

to these semantic categories are static, and can thus be rea-

sonably used as references for performing ego-motion esti-

mation. Simply eliminating certain semantic categories by

heuristics or attention weights based on human priors in all

scenarios may limit the performance of VO models. More-

over, attention is not required to be a binary decision lim-

ited to certain semantic categories. Motivated by the above

insights, in this paper we assume that in different motion

scenarios, dynamically adjusting the attention weights on

different semantic categories for input frames might be ben-

eficial for deriving the pose (and thus the ego-motion) of the

camera.

In order to validate the assumption, in this work we pro-

pose to employ flow maps for dynamically adjusting the at-

tention weights of different semantic categories in different

camera motion scenarios. Optical flow is an excellent type

of feature representation derived from consecutive image

frames that incorporates the information about the displace-

ment of pixels [33]. As flow maps contain rich information

relevant to the motion of the camera [4, 10-12] as well as

those of the perceived semantic contents, it is reasonable

to distinguish different motion scenarios by leveraging on

them. In order to achieve this objective, in this work we



propose to generate the attention weights of different se-

mantic categories dynamically according to the changes in

flow maps. These weighted semantic categories can then

be used to generate the attention maps that highlight the

relative importance of different regions in input frames for

pose estimation. Fig. 1 shows an example for demonstrat-

ing the changes in attention maps of our work for three

scenarios: (a) moving straight, (b) turning right, and (c)

turning left. The four rows correspond to the RGB frames,

their semantic segmentations, the flow maps generated from

these frames and their next frames, and the derived attention

maps. The brighter parts of the attention maps correspond

to the regions with higher attention weights. It is observed

that for scenario (a), the attention map focus more on the

road and the sky regions while suppressing the regions of

cars. For scenario (b) and (c), on the other hand, the re-

gions of cars are less suppressed, while the sky region is

less focused. These examples illustrate that the relative im-

portance of the semantic regions in the attention maps may

vary when estimating the ego motion of the camera. By

leveraging flow maps, the concept discussed above enables

derivation of the attention maps without human supervision.

We additionally offer an ablation analysis of the sources for

generating the attention maps in Section 4 to justify our de-

sign decision.

As a result, in this paper we propose DAVO, a Dynamic

Attention-based Visual Odometry framework for estimat-

ing ego-motion of a monocular camera. DAVO is a learn-

ing based framework based on DCNNs, without using depth

maps or recurrent memory cells [12,14,34]. Different from

similar previous learning based works (which are described

in Section 2), DAVO feeds consecutive RGB input frames

and flow maps adjusted with attention maps to its pose es-

timation DCNN. Each attention map is generated by an At-

tention Module revised from a squeeze-and-excitation net-

work (SENet) [35], and is implemented as the weighted sum

of the semantic segmentation channels, as depicted in Fig. 2

and later explained in Section 3. The weights are dynami-

cally adjusted according to the flow maps of consecutive

RGB input frames, which is generated by FlowNet 2.0 [33]

pre-trained on the Flying Chairs dataset [36]. These dynam-

ically adjusted weights allow DAVO to alter its attention

maps for different camera motion scenarios. To examine the

advantage of DAVO, we perform experiments on the KITTI

datasets [37], and compare the quantitative results on the

evaluation trajectories with a set of baseline methods. We

further illustrate the trajectories evaluated by DAVO as well

as the baseline approaches to compare their differences to

the reference ones. In order to validate the effectiveness of

the proposed framework and justify our design choices, we

perform a set of ablation analysis for the following cases:

(1) with and without the Attention Module, (2) dynamic and

static attention weights, (3) DAVO and feature-based atten-

tion design, and (4) different sources for generating the dy-

namic attention weights. The primary contributions of this

paper is summarized as follows.

• A learning based DAVO framework that feeds RGB

input frames and flow maps both weighted by the gen-

erated attention maps to the pose estimation DCNN.

• A concept of using flow maps for generating dynamic

attention weights for semantic segmentation channels.

• An approach that enables derivation of attention

weights without human supervision.

The rest of the paper is organized as follows. Section 2

briefly reviews the related works. Section 3 describes the

proposed DAVO framework, its components, and the train-

ing cost functions. Section 4 presents the experimental re-

sults as well as a set of ablation analyses. Section 5 con-

cludes.

2. Related Works

A number of learning-based monocular VO [8, 15, 16,

19,38,39] works that embrace DCNNs have been proposed

in the past few years. These monocular VO works exploit

the advantages of DCNNs to enhance the performance of

their ego-motion estimation accuracy as well as increase

the robustness against noisy features perceived in real en-

vironments. We summarize the related works into two cat-

egories: (1) flow-based approaches, and (2) attention-based

approaches. We do not consider the works that exploit depth

maps as they are not relevant to the scope of this paper.

2.1. Flow­based Approaches

A significant portion of research works [4,10,20,21,40]

have introduced optical flow estimation into their VO mod-

els in recent years. Instead of directly feeding consecu-

tive raw RGB frames into the VO models, flow maps can

be used as inputs for the VO models, as displacements of

pixels (and hence, the movements of the objects) between

consecutive image frames can be better employed by these

models in the process of ego-motion estimation. The au-

thors in [4, 10] introduce the famous FlowNet [41] in their

VO module, while the authors in [4] additionally introduce

an auto-encoder (AE) in their network architecture to en-

hance the flow representation. Architectures based on [41]

that employ recurrent memory cells to learn sequential de-

pendencies and complex motion dynamics of an image se-

quence have also been investigated in [12, 13, 42]. Similar

to [12,13], a recent work that incorporates a cascade of mul-

tiple flow networks [33] followed by a number of recurrent

neural network (RNN) cells and fully-connected (FC) lay-

ers are discussed in [11]. These works differ from DAVO in

that their flow maps are directly fed into the pose estimation

DCNNs, without considering any attention mechanisms.



2.2. Attention­based Approaches

A few recent researchers attempt to introduce attention

techniques to enhance the accuracy of their pose estimation

DCNNs [14, 31, 32, 34, 43]. These techniques fall into two

categories: (1) heuristic-based attention methods, and (2)

feature-based attention methods. In the first category, atten-

tion masks to the input frames are defined based on human

knowledge or heuristic experience. In Mask-SLAM [44],

semantic masks are manually selected (e.g., sky, car, etc.)

to filter out feature points extracted from input frames. On

the other hand, in [31, 32], pre-defined semantic regions

(e.g., walking people, moving vehicles, etc.) are directly

removed from input frames before performing pose estima-

tion. In [31], the authors further propose methods for en-

hancing moving objects detection according to the change

in projection depth of same keypoints between two frames

with respect to a custom defined threshold. These meth-

ods differ from ours in that DAVO does not require pre-

liminary knowledge for determining the attention weights

of different semantic categories. For feature-based atten-

tion methods, attention models are incorporated for adjust-

ing the relative weights of feature channels in the pose es-

timation DCNNs. In [34], an attention model is employed

to determine the global trajectory of the camera from meta

features generated by a set of local pose estimators. In

SRNN channel [14], a guidance attention model is sepa-

rately applied to the feature channels of the translation and

rotation estimation networks. In [43], an attention mecha-

nism is applied to both visual and inertial embedding be-

fore they are used for pose estimation. The above ap-

proaches differ from ours in that DAVO concentrates on

generating attention maps for RGB input frames and flow

maps, rather than applying the attention model to the ex-

tracted feature embedding. A comparison of our method

and SRNN channel [14] is provided in Section 4. Please

note that we do not compare ours with [34] and [43] because

(1) the former does not release the source codes and does

not benchmark their performance on the KITTI dataset [37],

and (2) the latter requires additional inertial measurement

units and is not an odometry method fully relies on visual

inputs.

3. Proposed Methodology

In this section, we introduce our DAVO framework.

We first provide an overview of the framework and walk

through the interplay of its components. We then dive into

the implementation details of the two proposed modules in

DAVO: the Attention Module and the Dilated Pose Estima-

tion Module (abbreviated as PoseNN hereafter). The for-

mer is designed based on the idea that the attention weights

should be adjusted dynamically, while the latter is devel-

oped with dilated convolutions [45] to enlarge the receptive

Figure 2: Overview of the DAVO framework.

fields of the feature maps for enhancing the pose estima-

tion accuracy. Lastly, we explain the loss function used for

training DAVO.

3.1. Overview of the DAVO Framework

Fig. 2 illustrates an overview of our DAVO framework.

The regions highlighted in red correspond to our Attention

Module and PoseNN. The rest of the DCNNs, including the

segmentation DCNN (SegNN) and the optical flow estima-

tion DCNN (FlowNN), are commonly seen in contemporary

VO models and are not within the scope of our contribution.

In our DAVO framework, FlowNN and SegNN are imple-

mented based on FlowNet 2.0 [33] and Deeplabv3+ [45]

(using Xception65 [46] architecture as its model backbone),

respectively.

For an RGB input frame I received at time t (denoted as

It), FlowNN generates optical flow maps (Ft→t, Ft+1→t)

by predicting the optical flow between consecutive input

frames (It → It, It+1 → It), respectively. In parallel,

SegNN performs pixel-level classifications, which classi-

fies each pixel of It+1 as one of a predefined set of n cate-

gories and represents the classification results as n segmen-

tation channels Sn
t+1. Please note that in this work, n is

set to nineteen because SegNN is trained on the Cityscape

dataset [47]. These segmentation channels are dynami-

cally weighted by our Attention Module, which highlights

their order of significance for each It+1 and produces an

attention map At+1. This attention map is then applied

to It+1 and Ft+1→t by pixel-wise multiplication to gener-

ate a weighted RGB frame I ′t+1 and a weighted flow map

F ′

t+1→t, respectively. The procedure is formulated as:

I ′t+1 = At+1 ⊙ It+1 (1)

F ′

t+1→t = At+1 ⊙ Ft+1→t, (2)

where ⊙ denotes pixel-wise multiplication. PoseNN then

takes It, Ft→t, I ′t+1, and F ′

t+1→t as its inputs, encodes

them by an eight-layer DCNN, and generates a three degree

of freedom (3-DoF) translational motion estimation ρ̂t→t+1

and another 3-DoF rotational motion estimation ϕ̂t→t+1 by

two separate DCNN branches named TransNN and RotNN,

respectively. The predicted relative pose χ̂t→t+1 is given



by:

χ̂t→t+1 = (ρ̂t→t+1, ϕ̂t→t+1) (3)

= P(It ⊕ Ft→t ⊕ I ′t+1 ⊕ F ′

t+1→t), (4)

where P(·) denotes PoseNN, ⊕ represents the channel-

wise concatenation operator, and ρ̂ and ϕ̂ correspond to the

predicted translational and rotational motions, respectively.

Note that Ft→t is a zero map consisting of two channels.

Finally, the entire trajectory is generated according to

χ̂t→t+1 = (ρ̂t→t+1, ϕ̂t→t+1) collected at different frame

timestamps. Please note that our framework leverages two

pairs of frames (It, It+1) and (It, It−1) as its inputs to pre-

dict χ̂t→t+1 and χ̂t→t−1 during the training phase for im-

proving the representation learning of ρ̂ and ϕ̂. During the

evaluation phase, only a single pair (It, It+1) is used by our

framework.

3.2. Attention Module

The Attention Module is designed to validate our as-

sumption that under different motion scenarios, dynami-

cally adjusting the attention weights on different semantic

categories for input frames might be beneficial for deriv-

ing the pose of the camera. This module takes the flow

map Ft→t′ produced by FlowNN and the n segmentation

channels Sn
t produced by SegNN as its inputs, and employs

an attention network AttentionNN to generate n attention

weights for the segmentation channels. The architecture of

our AttentionNN is inspired by SENet [35], which is com-

posed of one global pooling layer and two FC layers. The

attention weights reflect the relative importance of the seg-

mentation channels, and are collectively referred to as ant .

The Attention Module next generates the attention map At

by multiplying ant with the segmentation channels Sn
t and

then performing channel-wise addition of them. The atten-

tion map At not only dynamically preserves the semantic

categories of the segmentation according to Ft, but also

highlights the relative importance of the regions in It and

Ft that should be taken into consideration by PoseNN. We

therefore formulate above derivation as the following:

At =

n∑

i=1

ait ⊙ Si
t where ait = A(Ft→t′) ∈ [0, 1] (5)

A(·) represents the AttentionNN which is composed of one

positive value transfer, one global pooling layer, and two

FC layers, followed by a Tanh layer and a Sigmoid layer,

respectively. We validate the design choice of taking the

flow map Ft→t′ as the input of the Attention Module by an

ablation study presented and discussed in Section 4.4.

3.3. Dilated Pose Estimation Module

Our PoseNN is developed based on a decoupling archi-

tecture, which is inspired by [48]. PoseNN consists of two

Table 1: The parameter setups of PoseNN. In our work, the

shared layers 1 to 5 of PoseNN extract features for TransNN

and RotNN, while the layers 6 to 8 are used for predicting

the translational and rotational motions. The symbols B,

H , W , and C denote the batch size, the height and width of

the input feature maps, and the number of channels, respec-

tively.

PoseNN

TransNN RotNN No. of channels

Input Concatenation of two consecutive (B,H,W,C) frames C*2

layer 1 conv, 3x3, stride=2 16

layer 2 conv, 3x3, stride=2 32

layer 3 dilated conv, 3x3, rate=2 64

layer 4 dilated conv, 3x3, rate=4 128

layer 5 dilated conv, 3x3, rate=8 256

layer 6 dilated conv, 3x3, rate=2 dilated conv, 3x3, rate=2 128

layer 7 conv, 3x3, stride=2 conv, 3x3, stride=2 256

layer 8 conv, 1x1, stride=1 conv, 1x1, stride=1 3

Output Reduce mean to (B,3)-vector Reduce mean to (B,3)-vector

convolutional layers and three atrous convolutional layers,

followed by two decoupled branches TransNN and RotNN,

as described in Section 3.1 and Table 1. PoseNN employs

atrous convolutions [45] to enlarge the receptive fields of the

convolutional filters so as to provide it with a wider perspec-

tive to extract necessary features for performing pose esti-

mation. Atrous convolutions are also commonly referred to

as dilated convolutions, which enable DCNN layers to cap-

ture features at desired resolutions, resulting in expanded

window sizes without increasing the number of filter param-

eters. This is accomplished by sampling pixels according to

the strides given, and inserting zeros into convolutional ker-

nels. The dilation rates of the three atrous convolutional

layers in our PoseNN are set to 2, 4, 8 [49], respectively.

The five convolutional layers first extract features from con-

secutive frames and flow maps I , F , I ′ and F ′, and then

forward these features to TransNN and RotNN to predict

translational motion ρ̂ and rotational motion ϕ̂ accordingly.

Each layer in PoseNN is appended with a layer of ReLU

activation function except for the final layers. TransNN and

RotNN are made of one atrous convolutional layer with the

dilation rate set to 2, followed by two standard convolu-

tional layers. These two branches separately extract their

required feature maps, which are further analyzed in Sec-

tion 4.4.

3.4. Training Loss Function

The loss function used for training DAVO is a supervised

L2-norm loss for comparing the 6-DoF ground truth pose χ
and the predicted pose χ̂, where χ = (ρ, ϕ), as defined in

Section 3.1. It consists of a translational loss term Ltrans

and a rotational loss term Lrot, and can be represented as:

Lpose = Ltrans + λLrot, (6)



where λ is a scaling factor. Please note that in this work, the

value of λ is set to ten. Ltrans and Lrot are represented as:

Ltrans = ‖〈ρ〉 − 〈ρ̂〉‖
2
+ (‖ρ‖2 − ‖ρ̂‖2)

2 (7)

Lrot = ‖ϕ− ϕ̂‖2, (8)

where 〈·〉 denotes the Euclidean normalization vector, and

‖ · ‖2 represents the L2-norm operator.

4. Experimental Results

In this section, we present our experimental results qual-

itatively and quantitatively, and discuss their implications.

4.1. Experimental Setup

General setups. The proposed framework is imple-

mented on top of TensorFlow [51], and is trained on a server

equipped with an Intel i9-7990X CPU and three NVIDIA

GeForce GTX 2080 Ti GPUs. The Adam Optimizer [52] is

used for training with parameters β1 = 0.9 and β2 = 0.99.

The learning rate is initialized to 0.001, and is multiplied

by 0.9 every 100K iterations. The input image size is scaled

down to 416×128 in order to fit in the memory space of the

GPUs. In order to enhance the performance and avoid over-

fitting, our framework is trained using geometric augmen-

tation [53]. Moreover, our proposed DAVO framework and

its variants developed for our ablation analyses are trained

for 1,500k iterations to ensure convergence of the models.

Baselines. We compare the results of DAVO in terms

of pose estimation accuracy against a number of base-

line methods. These baseline methods include non-DCNN

based visual SLAM framework ORB-SLAM2 [18] (with-

out enabling the loop closing for a fair comparison with the

baseline VO algorithms), the open-source visual odometry

library VISO2 [50], as well as the related learning-based

VO works discussed in Section 2, such as CL-VO [11],

DeepVO [12], ESP-VO [13], SRNN channel [14], and the

method proposed by Fei Xue et al. [42]. Please note that

we do not consider the methods that exploit depth maps, be-

cause these methods are not fairly comparable to the scope

of this paper.

Evaluation benchmark. We evaluated DAVO and

the baselines on the famous KITTI Visual Odometry and

SLAM benchmark suite [37], which contains eleven an-

notated video sequences. Similar to the baselines [11-14],

DAVO and its variants are trained on sequences 00, 02, 08,

09, and evaluated on sequences 03, 04, 05, 06, 07, 10. The

performance of the evaluated trajectories for the sequences

is measured and reported using a metric called relative tra-

jectory error (RTE), which is the benchmark metric adopted

in KITTI [37] for measuring the relative translational and

rotational errors trel and rrel, respectively.

In Section 4.3, we additionally plot trajectories of

our framework trained on sequences 00, 02, 08, 09

and evaluated on the testing sequences 11, 16, 18 of

the KITTI Visual Odometry Dataset [37], and sequence

2011 09 26 drive 0022 sync (denoted as 22) of the

KITTI Raw Dataset [37]. We compare the evaluated trajec-

tories with those obtained from ORB-SLAM2 stereo ver-

sion (denoted as ORB-SLAM2-S) [18] and VISO2 stereo

version (denoted as VISO2-S) [50], since these testing se-

quences do not offer the ground truth data. We adopt the

trajectories generated by ORB-SLAM2-S as our reference

ones, because ORB-SLAM2-S involves global optimization

steps such as loop closure detection and bundle adjustment.

4.2. Comparison of the Quantitative Results

Table 2 compares the evaluation results of DAVO against

the baselines. The first column corresponds to the names of

the VO methods. The rest of the columns correspond to the

results measured from the evaluation sequences. We report

the results of the baselines at the upper rows and place the

results of DAVO and its variants at the bottom rows. It is ob-

served that DAVO outperforms most of the baseline meth-

ods, and delivers comparable performance to [42], which

additionally employs a spatial-temporal latent feature-based

attention unit for weighting the hidden states of its recur-

rent memory cells as well as a refining module for ag-

gregating them in its architecture. The averaged trel of

DAVO (the bottom row) is slightly (12.70%) higher than

that of [42]. However, DAVO delivers a lower (19.86%)

averaged rrel than [42] without using any recurrent mem-

ory cell. When compared with SRNN channel, which is

the best one among the rest of the learning-based VO base-

lines, the averaged trel and rrel of DAVO are 21.33% and

34.82% lower than those of SRNN channel, respectively.

The results presented in Table 2 therefore validate the ef-

fectiveness and advantage of DAVO. We further investigate

a variant of DAVO that adopts the feature-based attention

mechanism similar to [14] in our ablation analyses. Please

note that we do not implement a latent feature-based atten-

tion module as in [42], since we do not use any recurrent

memory cell in our DAVO framework.

4.3. Comparison of the Generated Trajectories

Fig. 3 plots the trajectories of DAVO, VISO2-S, and

ORB-SLAM2-S evaluated on the test sequences 11, 16, 18,

and 22. The reference trajectories (i.e., ORB-SLAM2-S)

are plotted in dashed curves. These test sequences cover

a wide variety of paths with various lengths and different

number of turns. As pose estimation errors accumulate

along each path and may dramatically influence the resul-

tant shape of predicted trajectories, these experiments thus

suffice to examine the effectiveness of different VO mod-

els. It is observed that DAVO outperforms VISO2-S in all

of the above test sequences. Compared with VISO-S, the

trajectories generated by DAVO are more closely matched



Table 2: Comparison of the evaluated trel and rrel for different evaluation sequences selected from [37].

Method
Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 10 Ave.

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

Non-Learning-based Monocular VO

VISO2-M [50] 17.55 0.0626 7.71 0.0180 18.87 0.0516 11.03 0.0326 16.03 0.1026 30.17 0.0577 16.89 0.0542

ORB-SLAM2-M [18] w/o LoopClosing 1.37 0.0022 1.23 0.0019 17.46 0.0063 21.02 0.0026 12.74 0.0143 4.44 0.0044 9.71 0.0053

Learning-based Monocular VO

CL-VO [11] 8.12 0.0347 7.57 0.0261 5.77 0.0200 7.66 0.0166 6.79 0.0300 8.29 0.0294 7.37 0.0261

ESP-VO [13] 6.72 0.0646 6.33 0.0608 3.35 0.0493 7.24 0.0729 3.52 0.0502 9.77 0.1020 6.16 0.0666

DeepVO [12] 8.49 0.0689 7.19 0.0697 2.62 0.0361 5.42 0.0582 3.91 0.0460 8.11 0.0883 5.96 0.0612

SRNN channel [14] 5.44 0.0322 2.91 0.0130 3.27 0.0162 8.50 0.0274 3.37 0.0225 6.32 0.0233 4.97 0.0224

Fei Xue et al. [42] 3.32 0.0210 2.96 0.0176 2.59 0.0125 4.93 0.0190 3.07 0.0176 3.94 0.0172 3.47 0.0175

Our Proposed Methods

Our framework w/o Attention Modele 4.08 0.0205 10.07 0.0149 2.48 0.0108 3.34 0.0084 6.53 0.0462 5.53 0.0189 5.34 0.0199

Our framework w/ Feature Attention 2.54 0.0183 7.23 0.0189 3.45 0.0129 3.97 0.0139 4.81 0.0329 6.85 0.0252 4.81 0.0204

Our framework w/ Static Attention 5.67 0.0246 6.89 0.0270 2.69 0.0134 2.48 0.0086 5.64 0.0313 5.26 0.0189 4.77 0.0207

DAVO (segementation source) 5.77 0.0248 8.51 0.0243 2.95 0.0137 3.49 0.0164 2.90 0.0217 4.94 0.0233 4.76 0.0207

DAVO (depth source) 3.60 0.0231 5.42 0.0295 3.25 0.0134 3.04 0.0107 6.20 0.0319 6.91 0.0228 4.74 0.0219

DAVO (rgb source) 5.50 0.0271 6.03 0.0237 2.28 0.0114 4.19 0.0169 4.11 0.0261 4.26 0.0170 4.40 0.0204

DAVO 3.39 0.0194 7.07 0.0130 2.54 0.0109 2.31 0.0083 2.78 0.0198 5.37 0.0164 3.91 0.0146

1 trel : Average translational RMSE drift (%) on length from 100, 200 to 800 m.
2 rrel : Average rotational RMSE drift (◦/100m) on length from 100, 200 to 800 m.

(a) Sequence 11. (b) Sequence 16.

(c) Sequence 18. (d) Sequence 22.

Figure 3: Comparison of the trajectories evaluated on the

test sequences (described in Section 4.1) selected from [37].

to the reference ones. For sequences with evaluation length

longer than 300 meters, DAVO is able to generate trajecto-

ries sufficiently aligned with the reference ones. This obser-

vation justifies that DAVO is less susceptible to the evalua-

tion length than VISO-S, whose trajectories gradually devi-

ate from the reference trajectories during the course of eval-

uation. For sequences with several turns (e.g., sequences

16 and 18), DAVO still performs better than VISO-S and

demonstrates satisfactory results. This suggests that DAVO

is capable of handling both straight moves and turns, rather

Figure 4: Visualization of the feature maps extracted from

TransNN and RotNN for DAVO and its three variants.

than being only applicable to limited scenarios. These qual-

itative results as well as the insights discussed above thus

justify the effectiveness of the proposed DAVO framework.

4.4. Ablation Analysis

In this section, we provide a set of ablation analyses with

an aim to validate our design choices employed in DAVO.

4.4.1 DAVO w/ and w/o the Attention Module

We first inspect the impact of the dynamic attention weights

by evaluating our framework with and without the Atten-

tion Module, where the former corresponds to DAVO. This

experiment intends to validate if the attention module does

offer a positive impact on PoseNN. The results of the two

cases are summarized in Table 2. It is observed that for

most sequences presented in Table 2, the Attention Module

does help DAVO to bring down the averaged trel and rrel,
resulting in a reduction of them by 26.78% and 26.63%, re-

spectively. To further elaborate on the above observation,

we take sequence 07 as an example and visualize the fo-

cused regions of the feature maps [54] within PoseNN for

the two cases in Fig. 4. We select this evaluation sequence



Figure 5: Illustration of our feature-based attention variant.

because it contains both straight roads and clear turns, and

is thus suitable for demonstrating the difference between

the two cases. For DAVO, it is observed that the proposed

Attention Module enables the focused regions of TransNN

to become steady and concentrated on straight roads (i.e.,

Fig. 4 (a)). During turning, the feature maps of RotNN con-

centrate on the sides of the road, enabling DAVO to leverage

the changes from the sides of the frames to infer the turning

angle. In contrast, when the Attention Module of DAVO is

removed (i.e., Fig. 4 (b)), the focused regions become un-

steady and are scattered to multiple uncorrelated parts of

the input frames for both TransNN and RotNN, leading to a

degradation in pose estimation accuracy. Please refer to our

supplementary video for a more detailed demonstration and

visualization of the above cases.

4.4.2 Comparison of dynamic and static attention

weights

In order to examine the benefits of the proposed dynamic

attention weights over the static ones, we next compare the

performance of DAVO with a variant which replaces the dy-

namically adjusted attention weights in DAVO by a set of

static weights. These static weights are treated as trainable

parameters for optimization during the training phase, and

are then fixed during the evaluation phase. The sequences

used for training and evaluation are the same as those in

Section 4.2. Fig. 6 compares the dynamic attention weights

of DAVO with the derived static weights for different mo-

tion scenarios. These attention weights reveal that when

the static attention mechanism is adopted, semantics such

as road, sidewalk, terrain, and traffic light are more empha-

sized than person, car, and rider, as the objects belonging to

the latter group might move and is less favorable for pose

estimation. On the other hand, the emphasis of the dynamic

attention weights changes under different motion scenar-

ios. We further plot the ground truth camera motion (the

top part) and the attention weights of the nineteen semantic

categories (the bottom part) versus frame id for the evalua-

tion sequence 07 in Fig. 7. It is observed that the peaks in

yaw of the ground truth motion aligns with the periods of

changes in the dynamic attention weights. In other words,

the dynamic weights change values during turning motions.

Table 2 compares the results for the above cases. These

results suggest that when the static attention weights are

used, the values of trel and rrel for each sequence improve

significantly when compared to the case without the Atten-

tion Module. The averaged values of trel and rrel are de-

creased by 10.67% and increased by 3.86%, respectively.

When the dynamic attention mechanism is employed (i.e.,

DAVO), the averaged trel and rrel are further decreased by

18.03% and 29.47% with respect to the static attention case.

In order to explain this improvement, we similarly plot

the focused regions of the feature maps for the static at-

tention case in Fig. 4 (c). It is observed that the focused

regions of TransNN are widely scattered within the road

areas as well as several other regions of the input frame,

rather than concentrating on one or more specific regions or

semantic categories as Fig. 4 (a). On the other hand, the

focused regions of RotNN consistently fall on the bottom

part of roads, no matter the camera is moving forward or

making turns. Merely concentrating on the bottom regions

of roads may restrict RotNN from acquiring sufficient in-

formation for inferring the correct turning angles, which in

turn results in a degradation in the averaged value of rrel.
The above observation therefore provides the rationale of

employing the dynamic attention weights in the proposed

DAVO framework, rather than adopting and optimizing a

set of static ones.

4.4.3 Comparison of DAVO with a variant architecture

that employs feature-based attention mechanism

In order to validate the effectiveness of the proposed dy-

namic attention mechanism, in this section, we investigate

a feature-based attention variant of DAVO and compare its

performance against the proposed DAVO framework illus-

trated in Fig. 2. The architecture of this variant is illus-

trated in Fig. 5. For this variant, our Attention Module

described in Section 3.2 is removed, and two additional

SENet blocks [35] are separately inserted into the TransNN

and RotNN branches to serve as the feature-based attention

modules. Such a feature-based attention mechanism is re-

cently introduced by SRNN channel [14]. The sequences

used for training and evaluation are the same as those de-

scribed in Section 4.2. The values of trel and rrel of this

variant are also presented in Table 2. For this variant, it

is observed that the averaged values of trel and rrel are

slightly better than those of the case without using any at-

tention module (i.e., the case described in Section 4.4.1).

However, they are still worse than those obtained by DAVO

significantly. The visualization of the feature maps pre-

sented in Fig. 4 (d) shows that for TransNN, the focused

regions of this feature-based variant are also not concen-

trated and scattered to multiple parts of the input frames.

For RotNN, the focused regions merely fall on an even nar-

rower range of the bottom part of roads than Fig. 4 (c). It

leads to a degradation in performance, as focusing on a nar-



(a) DAVO attentions when moving straight. (b) DAVO attentions when making a turn. (c) Attention weights of our static variant.

Figure 6: Attention weights of semantic categories learned by DAVO and our framework with static attention mechanism.

Figure 7: The relation between the camera motion and the

attention weights in sequence 07. The horizontal axis cor-

responds to the frame id. The chart on the top shows the

ground truth motion of the camera, while the chart on the

bottom displays the changes in attention weights for the 19
semantic categories. Please note that the noisy region of

the DAVO attention weights between the 650th and 730th

frames is caused by the traffic flow in front the camera when

it is waiting to make a turn. We also plot the static weights

discussed in Section 4.4.2 in this figure for comparison.

row region may constraint the features available to RotNN.

4.4.4 Comparison of different input sources for gener-

ating the dynamic attention weights

In this section, we present an ablation study of using differ-

ent types of input sources to generate the dynamic attention

weights for validating our design of the Attention Module

in DAVO. Under the same framework, we additionally at-

tempt other types of inputs for AttentionNN, including raw

RGB frame I , depth map, and semantic segmentation chan-

nels Sn, to generate the attention weights for the segmen-

tation channels. We train these variant frameworks with

the same hyperparameter setup and training procedure de-

scribed in Section 4.1. For the depth map variant, depth

maps are produced by Monodepth2 [25]. The results are

also summarized in Table 2. It is observed that when seg-

mentation channels Sn are used as the input of AttentionNN

for generating the dynamic attention weights, the averaged

values of trel and rrel are 4.76% and 0.207◦/km, respec-

tively, significantly higher than those of DAVO. When depth

maps are used instead, the averaged value of trel is further

reduced by 0.42%, while the averaged value of rrel is in-

creased by 5.48%. The use of RGB frames enables the av-

eraged values of trel and rrel to be decreased to 4.40% and

0.204◦/km, respectively. However, these variant frame-

works are still not comparable to DAVO. One potential ex-

planation is that compared with the other types of input

sources, flow maps directly reflects the changes between

consecutive frames, while the other types of sources embed

such changes implicitly. This ablation study thus justifies

the use of flow maps for generating our dynamic attention

weights in DAVO.

5. Conclusions

In this paper, we proposed DAVO, a learning-based

framework for estimating the ego-motion of a monocular

camera. In order to validate the proposed framework, we

examined DAVO as well as its variants, and compared them

with the other contemporary VO approaches on the KITTI

Visual Odometry and SLAM benchmark suite. In our ex-

periments, DAVO demonstrated superior performance to

the baseline methods both quantitatively and qualitatively.

In addition, we provided a set of ablation analyses, vali-

dating each of our design choices adopted in the proposed

framework. As the proposed mechanism that leverages dy-

namic attention weights on different semantic categories

has been validated effective and beneficial in this work,

DAVO thus offers a promising direction for future attention-

based VO researches.
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