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Sim-to-Real: Virtual Guidance for Robot Navigation
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Abstract Proposed Methodolos

e pres_ent fn alisclive, low-cost, and | Overview of framework ® Our robot uses only a single monocular camera for ® Qur control policy model is trained using twenty
easy-to-implement modular framework

for completing complex navigation . Perception Module @ ; navigation, without assuming any usage of LIDAR, independent maps.

tasks. Our proposed method is based ) 5 5 ) stereo camera, or odometry information from the robot. A variety of obstacles are placed to resemble more

on a single monocular camera to ' : | . I Gontol Policy Moduleiit) During training, the control module only receives the to real world scenarios, bridging the gap between
localize, plan, and navigate. A : 1 | orP=HH I image segmentations rendered by simulators. simulation and reality.
localization module in our framework e ' ' T o | (R During execution, the control module receives image The size and field of view of the agent is the same

i Value ra ers. 8

first localizes and acquires the robot's 5 L1 ¥ [Gritic_] PPO@:. 8. r(s) ; - segmentations from the perception module. as our robot agent Husky and monocular camera

pose, which is then forwarded to our ' = 1 ’ - . . | | view mounted on it.
' : e perception module is only used during execution.
olanner module to generate a global The proposed framework consists of four modules: P P y g At the beginning of each episode, a map is

path and its intermediate waypoints. a localization module, planner module, perception module, and control policy module. It can be any semantic segmentation model. randomly selected, with the agent and the goal
This information along with the pose of The localization module is responsible for estimating the current pose of the robot from the The virtual guide is depicted as a yellow ball in this olaced at randomly determined locations.

the robot is then reinterpreted by our visual input, and conveys it to the planner. work, however, it is not restricted to any specific form of Our reward function is designed such that a
framework to form the “virtualguide”, The planner module constructs a path between the robot’s current location and the desired representation. The location is selected based on global one-time reward is awarded to the agent if the

Whi.Ch serves as a virtual lure for goal, defining a global direction for the robot to follow. direction and whether obstacles exist in relevant areas. distance between the virtual guide and the agent is
enticing the robot to move toward a The perception module translates RGB images from the monocular cameras into scene within a threshold.

specific direction. We evaluate our sermantic seamenitation | . . . . .
framework on a Husky robot in a | g T | o - _ No time penalty is applied during training.
This global direction is then reinterpreted by our framework as the tendency, which is rendered Xt \‘,}r
Gst

number of virtual and real-world [llustration of 20 training maps

environments and demonstrate the robot is able to follow the path derived by planner module and navigate to the goal.

robustness to various environmental The control policy module is implemented as a DRL agent, with an aim to learn a policy for . | | |
conditions. chasing the virtual guide and avoiding obstacle collision. (a) The robot’s pose. (b) The virtual guide.

environments. and validate that our as the virtual guide on the semantic segmentation input view. The virtual guide scheme in the s
framework is able to adapt to unfamiliar real world aims at rendering a virtual guide at suitable locations on segmented input such that {“

Experimental Results [V Pe——— N ““Conclusion
' Model settines and Robotic Platforms Three diverse routes : Achieves an average success rate of 95.3%. We presented a straightforward, easy to

| - lity in di implement d effect dul
Control policy module ® Maps are pre-built by ORB-SLAM2. B8 | _ . Results show that our system possesses adaptability in different Implement,  an effective  modular

» Environments include rugged ~ad sp=e" L indoor environments that Husky can fit in. framewo:k uhsmglontllz gt Sr:nﬁle n)onocu;a:
: - . | camera to handle the challenging robo
terrains and sidewalk-road i Environment Length | Success Rate Duration(s) © J9ing

_ transitions and large obstacles not (m) (%) p o navigation problem in the real world. We
Segmentation model visible in pre-built maps _ Buildingl | Route A | 16.96 100 47761 | 1.557 achieved this objective by introducing a
Retrained Google’s MobileNetv2 ‘ — : | e T T B sy  Buildingl | Route B | 10.06 100 48.773 | 0.502 virtual guidance scheme, which employs
on Cityscapes, ADE20K, and our (a) Husky CAD model. (b) Outdoor navigation. Achievements :  ByTUANGT o b e e Buildingl | Route C 3012 100 194.147 | 1.585 the virtual guide to navigate the robot’s
self-obtained dataset. Clearpath Husky Autonomous » Achieves an average success rate [ N e . Building2 | Route A | 48.53 81.82 116.278 | 1.257 policy to its destination. We performed

Localization module Ground Vehiple (AGV) for t?oth of 83% on route A,B, and C. _ @ Rouc A o) o , extensive experiments in diverse indoor
ORB-SLAMZ2 with a maximum of outdoor and mdoo.r navigation. The control policy module is the  DRE Rl e, w Other analvsis and outdoor maps, and verified that our
1500 features per image. Run on a laptop with Intel same for both indoor and outdoor T2 e, e P Analvsis of the Traiectories Naviaated by Hu method is robust to various environmental
PI"anne,r module | 17-9750H CPU and NVIDIA evaluation tasks. A — Lo - Ryeis UL Eie WS SUIon Fiipeias OF mxy conditions and generalizable to unfamiliar
Dijkstra’s path planning algorithm. GTX 1660Ti GPU 16G RAM. , T T T T It is observed that the trajectories are similar for each case, maps both in the virtual and real-world
Results demonstrate our system’s . - —_ o . : : .

Virtual evaluation diaras emain, R oo ass— Performance in Range-Based Obstacle Avoidance Tasks
T hens dlfBarsest vithaad e —— R 2 =2 Average pedestrian density is up to 5.4 people per minute
environments - ‘ = e t L - Indoor experiments This demonstrates that when our robot strays from the original M I f
A suburtan erss, & dimiy 1t 1 e | _ 7w Two buildings, four routes : path to avoid dynamic obstacles, virtual guidance is able to ore 1nio

office, and a race track. Ten to fifteen dynamic obstacles are placed along the robot’s route in lead it back and resume its original task.

TR S——— e S building 2, while no dynamic obstacles is set in Building 1. o . Watch Demo Video
Evaluation 1n obstacle avoidance tasks. - at QR code
(a) Suburban (b) Office (c) Race track ," ' o - B N Route Length | Success Rate Duration(s) it E

SimpleNet with 3 fully connected
layers and 128 hidden units.

At least 75% success rates

In each virtual environment, — — — oot : o o e 9 W (m) (%) T o
Validating that our mOdel iS nvironmen UCCB(SyS dateé urationgs ‘ i i | , F : 5 | 10 100 36.77 1569
L) A i ! | | 4 20 83 7409 | 3.144

able to act accordingly with. " Suburban 76.56 405.4 | 7.486 .. | e . 0 5 ity 7

our virtual guidance scheme  Race track 92 3358 | 2.39 s &) 100 77 R 397196 | 8.657 Email us at

i ili i Office 94 176.1 2.02 ildi
in unfamiliar environments. (a) Bldg 1 floorplan (b) Bldg 1 orb-slam (c) Bldg 2 floorplan (d) Bldg 2 orb-slam B 2 (ROULE £4) cylee@cs.nthu.edu.tw




